Tuning the Electronic Structure of Anatase Through Fluorination
نویسندگان
چکیده
A highly fluorinated anatase lattice has been recently reported, providing a new class of materials whose general chemical formula is Ti(1-x)□(x)X(4x)O(2-4x) (X(-) = F(-) or OH(-)). To characterise the complex structural features of the material and the different F environments, we here apply a computational screening procedure. After deriving a polarisable force-field from DFT simulations, we screen in a step-wise fashion a large number of possible configurations differing in the positioning of the titanium vacancies (□) and of the fluorine atoms. At each step only 10% of the configurations are retained. At the end of the screening procedure, a configuration is selected and simulated using DFT-based molecular dynamics. This allows us to analyse the atomic structure of the material, which is strongly disordered, leading to a strong decrease (by 0.8 eV) of the band gap compared to conventional anatase.
منابع مشابه
DFT Study on Oxygen-Vacancy Stability in Rutile/Anatase TiO2: Effect of Cationic Substitutions
In this study, a full-potential density functional theory was used to investigate the effects of Ti substitution by different cations. In both rutile and anatase, Ti atom was replaced by Ce, Au, Sn, Ag, Mo, Nb, Zr, and Y. Phase stability, electronic structure and formation energy of oxygen vacancy were compared for rutile and anatase. The results indicated that substitution of Ce and Zr increas...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملComputational studies on the interaction of vitamin C (ascorbic acid) with nitrogen modified TiO2 anatase nanoparticles
Density functional theory calculations were performed to investigate vitamin C interaction withN-doped TiO2 anatase nanoparticles. The adsorption of vitamin C on the energy favorable fivefoldcoordinated titanium sites was investigated. Various adsorption geometries of vitamin C towardsthe nanoparticle were examined. Since the adsorption energies of N-doped nanoparticles are higherthan those of ...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملDensity functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles
Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015